
www.cea.fr

Shape design of plasma facing components for stationary and transient power fluxes

J. P. Gunn

CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France.
T. Hirai, F. Escourbiac, R. Pitts

ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France

ITER International School
January 21-25, 2019
Daejeon, South Korea

Full-W divertor from start of ITER operations

Heat load specifications prescribe maximum heat flux perpendicular to an ideal, axisymmetric divertor with no castellations or MB shaping. The commonly heard phrase "steady state heat flux must be limited to $10 \mathrm{MW} / \mathrm{m}^{2 "}$ has its origin in such high heat flux tests. -specific to ITER MB technology. Other technologies have different limits.

Question: what will be the thermal response if we expose ITER MBs to a physics-based model of divertor plasma that delivers the specified power loads? -near glancing B-field incidence angle $\sim 3^{\circ}$; shaping; Larmor gyration around field lines

J. P. Gunn, et al. , "lon orbit modelling of ELM heat loads on ITER divertor vertical targets", Nuclear Materials and Energy (2017).
J. P. Gunn, et al., "Surface heat loads on the ITER divertor vertical targets", Nucl. Fusion 57, 046025 (2017).

CRZ HISTORICAL HEAT LOAD SPECIFICATIONS (FOR AN IDEAL AXISYMMETRIC DIVERTOR TARGET)

Steady State (SS) inter-ELM detached regime	$10 \mathrm{MW} / \mathrm{m}^{2}$	to avoid W recrystallization
Slow Transient (ST) reattachment (300 events)	$20 \mathrm{MW} / \mathrm{m}^{2} \rightarrow 10 \mathrm{~s}$	to avoid critical heat flux (boil-out)
Fast Transient (FT) ELMs	$\sim 0.5 \mathrm{MJ} / \mathrm{m}^{2}$	factor 2 margin against full surface melting of an initially cold monoblock

ITER monoblock technology

Tungsten

MONOBLOCK GEOMETRY AND B-FIELD ORIENTATION

view along cooling tube axis

view along magnetic field line

zoom of optical hot spot

feature	location	dimension [mm]	tolerance [mm]
gap	intra-PFU	$g_{\text {MB }}=0.4$	$\text { IVT: } m_{\mathrm{pol}}=\begin{aligned} & +0.2 \end{aligned}$
			OVT: $m_{\text {pol }}= \pm 0.1$
	inter-PFU	IVT: $\mathrm{g}_{\text {PFU }}=0.5 \rightarrow 1.0$	$m_{\text {tor }}= \pm 0.2$
		OVT: $\mathrm{g}_{\text {PFu }}=0.5$	
	intra-cassette	IVT: $\mathrm{g} \mathrm{PFU}=2.7 \rightarrow 3.5$	$m_{\text {tor }}= \pm 1.0$
		OVT: $\mathrm{g}_{\mathrm{PFU}}=3.2$	
	inter-cassette	$g_{\text {PFu }}=20$	$m_{\text {tor }}= \pm 5$
radial step	intra-PFU	$\Delta r=0.0$	$m_{\text {rad }}= \pm 0.3^{*}$
	inter-PFU	$\Delta r=-0.5$	$m_{\text {rad }}= \pm 0.3$
	intra-cassette	$\Delta r=-1.5$	$m_{\text {rad }}= \pm 1.0$
	inter-cassette	$\Delta r=-4.0$	$m_{\text {rad }}= \pm 2.0$
toroidal chamfer	both VTs	$h_{\text {tor }}=0.5$	± 0.1

Some of these tolerances have already been relaxed as a result of feedback from industrial suppliers, and they are complaining about others that are still too tight -consequences on divertor cost and performance

The studies reported here provide physicsbased guidelines that give solid arguments for negociations with suppliers

Literally thousands of 3D heat flux + thermal simulations were necessary to scan all tolerances and shaping alternatives

Message: good old analytic calculations and simple approximations remain a powerful tool - ANSYS is not God! Trust in your own brain.

Part 1

inter-ELM
(i.e. "steady state")

cea DESIGN: MB TOROIDAL BEVELING + TARGET TILTING TO PROTECT POLOIDAL LEADING EDGES

monoblock castellation results in exposed leading edges

0.5 mm toroidal chamfer protects leading edges from SS and ST loads

schematic view of divertor illustrating target tilting and monoblock chamfer

target tilting and monoblock toroidal chamfer result in increased MB heat loads

STRATEGIES TO PROTECT LEADING EDGES WORK BUT AT EXPENSE OF INCREASED T

heat flux delivered by plasma perpendicular to ideal target

Percentage increase of plasma heat load

target	tilting+unshaped	tilting+bevel
IVT $\left(\theta_{\perp}=3.2^{\circ}\right)$	$+16 \%$	$+47 \%$
$\operatorname{OVT}\left(\theta_{\perp}=2.7^{\circ}\right)$	$+19 \%$	$+56 \%$

ST leading edge melting \square

No leading edge melting, but...
SS recrystallization
ST marginal surface melting
FT ~90\% surface melt threshold

cea
 POLOIDAL EDGES MOSTLY PROTECTED BY BEVELING: WHAT ABOUT TOROIDAL EDGES?

steady state thermal response of misaligned PFUs at outer vertical target

poloidal leading edges are shadowed
BUT long toroidal edges and corners are still exposed
$>2000^{\circ} \mathrm{C}$

nominal steady state (SOLPS)

2000
SOLPS: OVT $10 \mathrm{MW} / \mathrm{m}^{2}$

All the different heat sources can be decomposed and studied individually to understand the thermal response... Next slides
$10 \mathrm{MW} / \mathrm{m}^{2}$ on strip of width 0.5 mm

$\Delta T\left[{ }^{\circ} \mathrm{C}\right]$

Thermal properties of materials vary with temperature, but not dramatically, so linear approximation is valid (principle of superposition: the thermal response to multiple heat loads is the sum of the individual responses)

This is a 2D problem

- 1D linear source on boundary of 3D volume - heat spreads in 2D, so small temperature gradient

CeZ THE LITTLE DEVIL : THE OPTICAL HOT SPOT

poloidal leading edge visible through gap crossings -direct irradiation by parallel heat flux ($\sim 200 \mathrm{MW} / \mathrm{m}^{2}$ in steady state)

cea
 OPTICAL HOT SPOT NOT A PROBLEM FOR INTERELM LOADS

IVT $q_{\mathrm{tg}}=10 \mathrm{MW} / \mathrm{m}^{2} \quad q_{\mathrm{rad}}=0$

This is a 3D problem - OD point source on boundary of 3D volume

- heat spreads in 3D, so small temperature gradient
N.B. temperature increase similar to hot strip, despite heat flux $\sim 20 \mathrm{X}$ higher! We'll hear more about the OHS when we talk about ELMs later...
surface temperatures $\sim 50 \%$ higher than high heat flux tests (because of tilt)
$q_{\mathrm{tg}}\left[\mathrm{MW} / \mathrm{m}^{2}\right]$

OVT intra-cassette

MELT@4.8	3418 / 50	$3308 / 49$	3204 / 47	$3100 / 46$	2996 / 45	2890 / 43	2782 / 42	2673 / 40	2562 / 39	2511 / 37
3231 / 47	3117 / 45	3009 / 44	2903/43	2796/41	2686 / 40	2575 / 38	2462/37	2347 / 35	2285 / 34	
2924/42	2809 / 41	2699 / 39	2587/38	2474/36	2359 / 35	2241/33	2122/32	2050/30		
2603/37	2486 / 36	2370 / 34	2253 / 33	2133/31	2012 / 29	1889 / 28	1806 / 26			
2266/32	2144/30	2023/29	1899 / 27	1774/25	1647 / 24	1554 / 22				2500
1910 / 26	1783/25	1656/23	1527 / 21	1397 / 20	1296 / 18					2000
1536 / 21	1405 / 19	1273/17	1142 / 16	1033 / 14						1500
1148 / 15	1016 / 13	$884 / 12$	771 / 10							1000
$758 / 10$	631 / 8	$520 / 7$	Tmax $\left[{ }^{\circ} \mathrm{C}\right] /$ heat flux to cooling tube MW/m²							
397 / 5	$294 / 4$									

$$
q_{\mathrm{rad}}\left[\mathrm{MW} / \mathrm{m}^{2}\right] \quad \begin{aligned}
& \text { *assuming worst case } \\
& \text { misalignments }
\end{aligned}
$$

critical heat flux $40 \mathrm{MW} / \mathrm{m}^{2}$ (formation of vapour layer, loss of heat handling, burnout)

COZ COMPILED RESULTS FOR WORST CASE (100\% CONVECTED POWER)

Consequence of shaping - power flowing to divertor must be reduced $\sim 2 / 3$ to avoid recrystallization

SUMMARY OF INTER-ELM ANALYSIS

inter-ELM loads

- shaping pushes surface temperature into recrystallization for steady state loads, and to marginal melting for slow transient loads (because of tilt)
-long toroidal edges heat up $\sim 100^{\circ} \mathrm{C}$ more than top surface (plasma flux into gaps)
- power to divertor would have be reduced if recrystallization is to be avoided
increase rate of Ne / N injection?
deeper detachement $=$ loss of confinement (A. Huber, JET)

cracking of some W grades during slow transients
S. Panayotis (PSI Rome, 2016)

G.Pintsuk, et al., SOFT2014
\uparrow Recrystallized layer
1-2 mm

Part 2

ELMs

CQZ BASIS FOR ELM ENERGY FLUENCE LIMIT $\sim 0.5 \mathrm{MJ} / \mathrm{m}^{2}$ dirfm

historical ITER limit $\varepsilon_{\text {surf }} \leq 0.5 \mathrm{MJ} / \mathrm{m}^{2}$
-factor 2 margin against full surface melting (i.e. $T_{\text {surf }}<1700^{\circ} \mathrm{C}$)
-marginal edge melting
N. Klimov, et al. JNM 390-391 (2009).

QSPA square pulse

data points from thermal model compared to visual evaluation of damage (dashed lines)

cea REFERENCE CASE FOR ELM ANALYSIS: 1D THERMAL RESPONSE TO A TRIANGULAR PULSE

triangular pulse, $250 \mu \mathrm{~s}$ rise time, $500 \mu \mathrm{~s}$ decay time
$\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]$

historical ITER ELM limit ($\varepsilon_{\mathrm{tg}}=0.5 \mathrm{MJ} / \mathrm{m}^{2}$) generates temperature spikes $\Delta T \sim 1100{ }^{\circ} \mathrm{C}$ This factor 2 margin against melting is degraded for initially hot monoblocks N.B. this limit applies to ideal, axisymmetric divertor with no castellations or shaping

AT A SHARP EDGE OR CORNER, THERMAL RESPONSE IS THE SUM OF 1D HEATING AT INDIVIDUAL FACETS

Exactly correct for linear case (temperature-independent thermal properties) (and 90° angles) Very good ($<5 \%$) approximation for non-linear (temperature-dependent thermal properties)

cea
 HEAT FLUX CALCULATION - HELICAL ION ORBIT APPROXIMATION (GYROMOTION ONLY, NO E-FIELDS)

1) For a given magnetic field angle and specified ELM energy density, we calculate the corresponding $q_{l /}=q_{\text {tg }} / \sin \alpha$
2) We then launch that $q_{/ /}$at the monoblocks and calculate the local heat flux at all the surfaces of shaped monoblocks + worst case misalignments by 3D ion orbit simulations.
(weighting based on floating, ambipolar sheath)
ion component: -parallel speed distribution from kinetic model of SOL -Maxwellian perpendicular speed distribution

electron component: -optical approximation (field line tracing)

Surprisingly (even to us) neglecting sheath E-fields is a pretty good approximation.
Confirmed by comparison with 2D particle-in-cell code SPICE (M. Komm, et al., Nucl. Fusion 57, 046025 (2017).

Ions striking the surface have a restricted range of impact angles (nearly grazing)

Angles outside this range do not exist because the ion would have struck the surface earlier

REMARKABLY LITTLE DISCREPANCY BETWEEN
 SIMPLE MODEL AND SELF CONSISTENT SHEATH

Electrostatic sheath (thin layer of strong electric field $E \sim T_{e} / \lambda_{D}$) separates surfaces from plasma, keeping the plasma electrically neutral Main effect is EXB drift parallel to surface - impact angles do not change much Assuming $\mathrm{E}=0$ seems dumb, but the approximation is "good enough"

cea
 HELICITY OF ION ORBITS INTRODUCES ASYMMETRY iRfin BETWEEN IVT AND OVT TOROIDAL GAPS

[^0]
Cea STRONG HEATING AT IVT LOWER TOROIDAL EDGES diRfm AND OVT UPPER TOROIDAL EDGES

IVT: ions strike shadowed bottom side OVT: ions strike wetted top side -at both targets, electrons hit top side

First experimental confirmation of this asymmetry in COMPASS (for inter-ELM heat loads)
R. Dejarnac, et al.,Nucl. Fusion 58, 066003 (2018).

plasma	H	D or He	D+T
A/Z	1	2	2.5
I_{p} [MA]	5.0	7.5	15
B [T]	1.76	2.65	5.3
$\mathrm{n}_{\mathrm{e}}\left[10^{20} \mathrm{~m}^{-3}\right]$	0.3	0.4	0.8
$\mathrm{T}_{\mathrm{i}}[\mathrm{keV}]$	1.7	2.5	5.0
$\Delta \mathrm{t}_{\text {ELM }}$ [$\mu \mathrm{s}$]	271	316	250
steady state $\mathrm{q}_{\text {tg }}\left[\mathrm{MW} / \mathrm{m}^{2}\right]$	2.5	5	10
$\left.\mathrm{T}_{\text {init }}{ }^{\circ} \mathrm{C}\right]$ surface (edge)	450 (550)	800 (1000)	1500 (1900)

$$
\Delta t_{E L M}=250 \sqrt{\frac{2 A}{Z T_{i}}} \quad[\mu s]
$$

ELM rise time:
empirical scaling assuming free streaming from midplane to target at ion sound speed

PREDICTIONS FOR ITER BASED ON RECENT ELM SURFACE ENERGY DENSITY SCALING

scenario	full surface melting?	edge melting?
pre-nuclear hydrogen 5MA	avoided with wide margin	avoided with narrow margin (less than 2)
pre-nuclear D or He 7.5 MA	avoided with narrow margin (less than 2)	possible during largest ELMs
DT nuclear burn 15 MA	unavoidable	unavoidable

EDGES AND CORNERS (EVEN WHEN SHADOWED) iRfm ARE EXTREMELY VULNERABLE

Bonus:
optical hot spot! heat load is sufficient to trigger tungsten BOILING at every ELM

At IVT, ions and electrons flow to opposite sides of the toroidal gap
-poloidal beveling to protect against ELMs cannot fully succeed because either ions or electrons are affected, but never both

 decreased heating on main surface shadowing of lower edge from ELM ions

At OVT, both electrons and ions flow to the same side Combined poloidal and toroidal bevels has the potential to mitigate the ELM and inter-ELM TG loading problem

 shadowing of upper edge from both ion and electron loads
slightly increased heating on main squface slight increase of ion heating at lower edg̊e

reference 0.5 mm toroidal bevel no poloidal bevel worst case misalignments TG edge and OHS are visible
reference 0.5 mm toroidal bevel

+ additional 0.5 mm poloidal bevel
\rightarrow "shallow poloidal bevel"
Chosen to shadow TG edge for all possible radial misalignments and gap tolerances Bonus! \rightarrow no OHS ... IF TOROIDAL GAPS ARE POLOIDALLY ALIGNED

cea
 POLOIDAL ALIGNMENT BETWEEN ADJACENT MBS IS NOT SPECIFIED IN WEST (OR ITER) DESIGN

Only individual TGs are toleranced

defin

nominal TG width $g_{\mathrm{MB}}=0.5 \mathrm{~mm}$

PROBLEM BETWEEN ELMS

upper edge - lower edge [${ }^{\circ} \mathrm{C}$]

negligible increase of top surface heating simple toroidal bevel $-q_{\text {surf }} / q_{\mathrm{tg}}=1.56$ shallow poloidal bevel $-q_{\text {surf }} / q_{\mathrm{tg}}=1.64$
suppression of toroidal edge heating (now cooler than top surface because of shadowing)
suppression of OHS heating

O2 TEMPERATURE PROFILES IN TOROIDAL AND POLOIDAL DIRECTIONS

... at the expense of a slight increase along the lower edge
simple toroidal bevel

toroidal-poloidal bevel

According to ion orbit modelling (and PIC), uncontrolled ELMs will melt all monoblock surfaces and edges at both vertical targets in burning nuclear scenario.

Exposed points ($<1 \mathrm{~mm}^{2}$) at optical hot spot will be melted or even vapourized.
Edge melting is possible in half-field pre-nuclear scenario.
The reason: a combination of plasma physics (Larmor radius), geometry (enhancement of heating $\times 2$ at edges, $\times 3$ at corners), and high MB temperatures.

The simple toroidal bevel solution has been retained for ITER. It is too late and would be too expensive to implement a more complex outer target shaping solution at this stage.
In any case there is no solution at the inner target (because of ion Larmor effect)
These findings will be useful for divertor design in future fusion devices. (Detailed analysis submitted "soon" to Nuclear Fusion journal)

It is imperative to find ELM-free regimes in ITER.

defin
after

[^0]: electrons strike upper edges at both targets (tiny Larmor radius)

